Description of Lesson

Without fungi, our forests not survive. Fungi have three main roles in forest ecology: rotting wood; parasitizing weak or diseased trees; and forming symbiotic relationships with trees. In this lesson students are introduced to the ecological roles of fungi in the forest, relevant vocabulary, and various forms of the fruiting bodies. Students will then search for fungi in surrounding forested areas!

At a Glance

Grade Level: 7

Learning Environment:
Outdoor Classroom
Forested Area

Prep Time: 15 minutes

Length of Lesson: 1.5 hours

Key Vocabulary: Fungi, Mushrooms, Hyphae, Mycelium, Gill, Pore.

Staffing: 1 educator/ 5 students

Materials:
White Button Mushrooms
1 copy of the “Mushroom Worksheet” per student
“Mushroom I.D.” Sheet
Clipboards and pencils (1/student)
Hand lens - 1 per group

Groupings: Whole class, and Small groups of 2 or 3

Teaching/Learning Strategies:
Socratic Dialogue, Lecture, Field Trip
Lesson Outline

<table>
<thead>
<tr>
<th>TIME</th>
<th>ACTIVITY</th>
<th>LOCATION</th>
<th>MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 minutes</td>
<td>Socratic Dialogue</td>
<td>Outdoor Classroom</td>
<td>White Button Mushrooms</td>
</tr>
<tr>
<td>15 minutes</td>
<td>Lecture</td>
<td>Outdoor Classroom</td>
<td></td>
</tr>
<tr>
<td>1 hour</td>
<td>Field Trip</td>
<td>Forested Area</td>
<td>Mushroom Worksheet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mushroom I.D. Sheet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hand lens</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Field Guide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clipboards</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pencils</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gloves</td>
</tr>
<tr>
<td>5 minutes</td>
<td>Debrief</td>
<td>Outdoor Classroom</td>
<td>Samples from field Trip.</td>
</tr>
</tbody>
</table>

Curriculum Expectations
Grade 7 Science and Technology

Understanding Life Systems: Interactions in the Environment

Overall Expectations
2. investigate interactions within the environment, and identify factors that affect the balance between different components of an ecosystem.

Specific Expectations
2.1 follow established safety procedures for investigating ecosystems (e.g., stay with a partner, wash hands after investigating an ecosystem);

3.3 describe the roles and interactions of producers, consumers, and decomposers within an ecosystem

3.5 describe how matter is cycled within the environment and explain how it promotes sustainability (e.g., bears carry salmon into the forest, where the remains decompose and add nutrients to the soil, thus supporting plant growth; through crop rotation, nutrients for future crops are created from the decomposition of the waste matter of previous crops).
When we think about living things, we usually group them into either plants or animals. At first glance, fungi or mushrooms might seem to be plants. The mushrooms are stationary; they reproduce by spores, which are much like seeds; and they seem to have roots. But in many ways they are much more like animals: they have no chlorophyll to produce their own food; they actively forage for their food; and they can feel their surroundings. Unlike plants which are producers, fungi are consumers and decomposers in ecosystems.

Fungi have three major roles in keeping our forests healthy: decomposing wood and recycling nutrients back into the soil; decompose rotting; removing diseased and weak trees, and supplying nutrients to healthy trees to help them thrive.

In fact, fungi is its own kingdom of life! The most fundamental thing that makes a fungus different from a plant or an animal is the construction of cells. Cells are the basic building blocks of life. Every living thing is made up of tiny cells so if every cell is changed a little the compounding of this change can affect how species turns out greatly.

Animal cells, like those of humans, are somewhat round and squishy they kind of bunch together randomly and are held together into their shape by stretchy wrapping called membranes. Plant cells have hard outer coverings, called cell walls. They are regular shapes and are well ordered. By connecting the cell walls and building stiff structures, plants are formed.

Fungal cells are something else entirely. They grow in long strings one after another - much like a string of beads. They have a hard outer wall like plants, but it is made out of different material. These cells are made chitin, the same material as an exoskeleton of an insect. Fungal cells have pores where they connect so that things can be passed all the way down the line. Individual threads of cells are called hyphae. The fungal cells look much like beads on a string. A bundle of a thousand strands of hyphae is no thicker than a single strand of human hair. When the hypha bunches together so that you can see it, it’s called mycelium. If you feel a piece of a mushroom you will notice it’s spongy. This is because it is made of the hyphae threads all bunched together up tight together, much like steel wool.
Mushrooms: The Tip of the Iceberg

The mushroom is only a tiny part of a fungus. A mushroom can be thought of as the tip of the iceberg. Most of what makes up a fungus is the long, spreading hypha all throughout the substrate. A substrate is substance a fungus grows on. This can be something like a rotting log, dirt, or a living tree. The hypha spread out through the substrate looking for nutrients, somewhat like roots.

These networks of hypha can spread for many kilometres and survive for centuries. Sometimes if you poke around in a rotting log you can see the bunched hypha or mycelium running through the wood. Once a fungus finds nutrients, how does it “eat” it? A fungus does it in very much the same way as a spider digests its food. The tips of the hypha excrete digestive juices which dissolve the food into liquid and they suck it all up through their cell walls like a sponge. If most of a fungus is hidden in the substrate what is a mushroom for? Why would a fungus go to all the trouble of making this strange and complicated structure if it had all it needs hidden away almost invisible and dissolving its food away contentedly?

Why Mushrooms?

So the question is, why mushrooms? Well the word used for mushrooms, or any of those fungal masses that you see that don’t necessarily have a cap and stalk, is fruiting body. A mushroom or fruiting body acts like a fruit in a real plant.

The fruiting body contains the seeds for a mushroom which are called spores. The spores develop in special cells inside the mushroom and are released when they are ready. Although a spore can be compared to a seed in their function, they are not physically much like a seed at all. Unlike most plant seeds, a spore consists of one single fungal cell. Sometimes the walls of the fungal cell are thickened for protection. The spores can be many different shapes and all sorts of colours. Spores are only single cells so they are very tiny and can’t be seen without a microscope.

However, if you collect a large amount of them they appear as dust. One way to do this is to do a spore print by taking off the stem, waiting a couple of hours.

Spores can be many different colours and some mushrooms that at first appear the same can be distinguished by their different coloured spores. Most mushrooms enthusiasts will do a spore print before trying identify a fungus. Spores come in white, yellow, brown, black, pink, and even purple or green.
A mushroom’s sole purpose is for reproduction. In order for a fungus to be successful, its fruiting body must do its job. The first way to do this is to produce as many spores as possible. The key to spore production is surface area. Spores must be produced on a surface that is exposed to the air so that when the spores ripen they can be carried away in the breeze or distributed by insects or animals. Many mushrooms are built like miniature skyscrapers. The main determining factor of the shape and component of a fungal fruiting body is the maximization of surface area to produce spores while using a limited amount of forest floor to maximum efficiency.

Fungi – Three Vital Roles

Many people think of fungus as something that kills trees and grass, rots your bread and toenails or maybe just something weird that grows on your lawn and tastes good on pizza. However, fungi play three extremely vital roles in the ecosystem. 90% of the biomass, the combined weight of all living things, in forest soil is fungi. In other words, if you were to weigh all of the living matter in forest soil, 90% would fungus. The rest is bacteria, small plants, and seeds and such. That’s quite large piece of the pie! What’s all that fungus doing there? Surely it can’t all be killing plants. There are three different roles fungus plays in ecosystems: saprophytic, parasitic, and mycorrhizal.

Role One: The Great Rotter

Most of the fungi you see in the forest is saprophitic fungi, or decomposers. Fungi are some of the best decomposers out there. If it was not for decomposers anything that fell on the forest floor would stay there. The forest would be smothered in dead leaves trees and animals and no nutrients would ever be returned to the earth for new living things. Instead, fungi breaks down dead things and turns it into the best food a plant can get. Fungi is especially good at decaying wood. The hypha wiggle their way all through the dead matter such as logs and use their digestive enzymes to break down the dead wood and recycle it into nutrients that plants can use. Wood rotting fungi can be seen throughout the forest as brown and white rot. While we humans cannot break down cellulose and lignin, the main structural components of wood, fungi can. Brown rot removes the white, pulpy cellulose leaving the brown lignin untouched. While white rot attacks the brown lignin, leaving the cellulose intact, giving the wood a white appearance.

Role Two: Getting Rid of the Weak

Parasitic fungi feed off the energy produced by other living things. An example of parasitic fungi would be the fungal infections you get on your feet. Some mushrooms growing near trees take nutrients from tree roots.
These fungi may seem bad; however, in a natural ecosystem their role is important. Just like diseases, parasitic fungus keeps plant and animal populations stable and healthy. Weak individuals are killed or weaken so that they cannot reproduce. As a result the strong pass on their healthy traits.

Role Three: Friend of Trees

Looking at some of the huge, old white pine in the area, people may think that these particular trees effectively used their own roots to take up the water and nutrients necessary for their survival.

However, fungi also have a role here. The last role is the most fascinating – mycorrhizal fungi!

Many people believe that forest trees take up water and nutrients through root hairs. This belief is quite wrong. The trees need their associated fungi in order to survive. Each individual tree has hundreds of thousands of kilometres of hyphae associated with its roots. It is these mycorrhizal fungi that supply the tree with the nutrients and water that it needs for healthy growth.

This is a good arrangement for the trees, but what does the fungi get for their efforts? The trees give the fungi sugars that are manufactured through photosynthesis in its leaves. Using this sugar for energy, the fungi maintains their presence as a hyphal grid though the soil to supply the trees. Some of these tree sugars are even used to produce fungal fruiting bodies, or mushrooms.

Fungi and the Forest

Without fungi, our forest would not be healthy. Fungi are needed to decompose rotting wood, remove diseased and weak trees, and supply nutrients to healthy trees to help them thrive.

Did you Know?! The largest mushroom in the world is a parasitic fungus in Oregon. It is a honey mushroom (Armillaria ostoyae) mycelial mat that covers more than 2400 acres and is possibly 2,200 years old!!

Have you Ever… been walking through the woods at night and noticed something glowing? It could have been “Foxfire” or bioluminescent fungi. We have a species of Honey Mushroom here (Armillaria mellea) that can glow in the dark – often found on oak trees. This type of fungi stains the wood bluish-green.
Part A: Socratic Dialogue
This Socratic dialogue will serve as an introduction to Fungi. Bring in a white button mushroom for each student.
Ask the students:
What do you think that fungi is?
How would you define it? (Kingdom of its own; structure of fungi versus plants and animals at cell level; spore versus seeds).
Why do you think that fungi is important in keeping the forest healthy?
Why does the forest need fungi? (Explain the 3 roles of fungi in the forest - decomposers of rotting wood; parasites of weak and unhealthy; and symbiotic companions of trees.)

Part B: Lecture
Explain the basics of fungi structure using the background content provided: hyphae, mycelium, fruiting bodies (mushrooms), spores.

Part C: Field Trip
Explain safety guidelines to the students: wear gloves, stay in group, define boundaries, and wash hands after field trip. (Note: Some mushrooms contain toxins. Do not eat or taste mushrooms).
Divide students into groups of 2 or 3. Give each group a Mushroom Worksheet and a Mushroom I.D. Sheet. Explain that groups are to find five mushrooms and to fill in the worksheet. Mushrooms can be picked - as they are the fruiting bodies, it will not kill the entire organism. However do not pick all the mushrooms at one site

Part D: Debrief
As a class, have each group present on their most interesting mushroom. Ask:
Were you surprised by anything when you were looking for fungi?
What do you think the ecological role of your fungi might be depending upon the substrate that you found it growing?

Teaching and Learning
Making a Cultural Connection
The English word mushroom or fungus translates to wazhashkwedow in the Ojibwe language.
On the Northern Plains, Haploporus odoros, a kind of fungi, was often included in medicine bundles to protect against illness. (Information from Blanchette, 1997, “Haploporus Odorus: A Sacred Fungus…”)

Georgian Bay Biosphere: Lesson in a Backpack Program
Extension Activities

Assessment Activity

In a Learning Log, have students write about significant learnings from the fieldtrip.

1. Historical Myths

Mushroom legends abound in many cultures. Students can research some of these stories and present to class.

2. Growing mushrooms

Conduct science experiments on the various environmental factors (substrate, humidity, temperature, and light) to see what type of conditions oyster mushrooms prefer. Mushroom growing kits are available at www.fungiperfecti.com.

3. Fungi and Restoration

Fungi can be used effectively in projects to restore soil that has been contaminated with oil products, especially wood-rotting fungi. Research the potential of fungi for this use. A good resource is: Mycelium Running: How Mushrooms Can Help Save the World by Paul Stamets.

Additional Resources

North American Mycological Society - Education Resources. Lesson plans, professional site links, photographs can be found on this site <www.namyco.org/education/index.html>.
Mushroom Identification

Mushrooms with Caps

Cap Shapes

- Bell-shaped
- Triangular
- Rounded
- Depressed Centre
- Flat top
- Funnel-shaped
- Shaped like half an egg
- Deep depression in middle
- Centre Bump

Cap Bottoms

- Bell
- Triangular
- Rounded
- Depressed Centre

Gills:
wide and thin sheet-like plates radiating from stem

Pores:
many small tubes ending in a spongy surface

Ridges:
short, blunt elevated lines on stem and under cap

Teeth:
many small finger-like projections

Copyright (c) 2006, DEBIVORT. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”.

Georgian Bay Biosphere: Lesson in a Backpack Program
Name: _____________________
Date: _____________________
Location: ___________________

As you find a mushroom, complete the following chart. Find 4 mushrooms.

<table>
<thead>
<tr>
<th>Mushroom #</th>
<th>Draw 2 pictures (Top and bottom)</th>
<th>Describe the mushroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Top: colour, shape of mushroom, etc. Bottom: gills, pores, teeth, etc.</td>
<td>Colour:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Size (mm):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Form of Mushroom:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shape of Cap:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower surface:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>What growing on:</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Colour:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Size (mm):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Form of Mushroom:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shape of Cap:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower surface:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>What growing on:</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Colour:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Size (mm):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Form of Mushroom:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shape of Cap:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower surface:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>What growing on:</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Colour:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Size (mm):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Form of Mushroom:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shape of Cap:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower surface:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>What growing on:</td>
</tr>
</tbody>
</table>

Georgian Bay Biosphere: Lesson in a Backpack Program